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Abstract. Level crossings have a function to let the traffic cross the
railroad from one side to the other. In the Netherlands, 2300 level cross-
ings are spread out over the country, playing a significant role in daily
traffic. Currently, there isn’t an accurate estimation of the arrival time
of trains at level crossings while it plays an important role in traffic flow
management in intelligent transport systems. This paper presents a state-
of-the-art deep learning model for predicting the arrival time of trains at
level crossings using spatial and temporal aspects, external attributes,
and multi-task learning. The spatial and temporal aspects incorporate
geographical and historical travel data and the attributes provide spe-
cific information about a train route. Using multi-task learning all the
information is combined and an arrival time prediction is made both for
the entire route as for sub-parts of that route. Experimental results show
that on average, the error is only 281 s with an average trip time of one
hour. The model is able to accurately predict the arrival time at level
crossings for various time steps in advance. The source code is available
at https://github.com/basbuijse/train-arrival-time-estimator.

Keywords: Train arrival time prediction · Deep learning ·
Spatial-temporal neural networks · Multi-task learning

1 Introduction

Every metropolis with an extensive transportation network commonly experi-
ences problems with traffic flow management. These problems may lead to the
delay of public transport, poor emergency services, increased fuel consumption,
environmental pollution, etc. [2]. Providing accurate and timely traffic infor-
mation such as arriving time of vehicles plays an important role in intelligent
transport systems. In this term, level crossings also play a big role as they can
hinder traffic for a specific time period when a train passes.
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A railroad is divided into sections separated by electrical separation welds
used to track whether a particular train is on the railroad. Whenever a train
crosses an electrical separation weld, an electrical circuit is closed, and the elec-
trical signal is converted to a digital signal. The signal is received, and the train
position is updated by a train traffic controller in a control room. This helps the
train traffic controller to guide the train traffic across the railroad safely. Being
informed of the train cross passing time at level crossings in advance can have
several advantages for multiple stakeholders. Those benefits are direct or indirect
and include but are not limited to enhanced traffic flow, improved decision mak-
ing for emergency services, and additional safety enhancements for (non-secured)
level crossings.

Forecasting methods have large influence on the development of different
artificial intelligent branches consists of Fuzzy Systems [10], Natural Language
Processing [12–15], Expert Systems [19] etc. Numerous methods for predicting
the arrival times of vehicles have been proposed in recent years. These methods
support a variety of different approaches from traditional machine learning and
statistical based models (e.g. support vector machines [7] and Kalman filter [1,6])
to neural network based architectures (e.g. long short term memory (LSTM)
[3,11,17,20]. Predicting the arrival times with the help of deep learning models
has been done in some recent works [9,22]. However, most of these works aim
to predict the arrival time for road vehicles [5,16], and the railroad industry
lagged behind that in terms of development. This paper presents a deep neural
network-based architecture for predicting the train arrival time at level crossings.
It is inspired by the Deep Travel Time Estimator model of Wang et al. [18]. The
main contributions of this paper are as follows:

– In this paper, a state-of-the-art deep arrival time estimator is presented that
predicts the arrival time of trains at level crossings. The model uses the
spatial-temporal features, external attributes, and a special Convolutional
Neural Network (CNN) layer called Geo-Conv layer.

– To the best of our knowledge, there is no previous study in the domain of
arrival time predictions for trains that have utilized a deep learning model as
an arrival time estimator to predict the arrival time of trains at level crossings.

– The experiments show that the proposed model can accurately predict the
arrival time for various timesteps in advance.

The rest of this paper is organized as follows: In Sect. 2, an overview is given
of the datasets that are used. Section 3 presents our proposed model in detail;
Sect. 4 is dedicated to the details of the experiments and results; and finally,
Sect. 5 concludes the paper.

2 Datasets

The dataset for training and testing of the proposed model is described in more
detail in this section. In Listing 1.1 the required input format of the model is
shown.
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Listing 1.1. The data in JSON-format

{

....

}

{

"Sections ":[" AH$2001T", ...., "HDR$1119BT "],

"time_gap ":[0.0 , ...., 8507.0] ,

"dist_gap ":[0.0 , ...., 185.56992499610186] ,

"lats ":[51.98704004887645 , ...., 52.94988504678495] ,

"lngs ":[5.873883222270905 , ...., 4.762389563964237] ,

"TrainID ":3066 ,

"timeID ":1142 ,

"weekID ":5,

"dateID ":1,

"time ":8507.0 ,

"dist ":185.56992499610186 ,

"trainTypeID ":3

}

{

....

}

In the listing, the Sections key is a list with all the sections that have been
traversed for a particular train route. The time gap and dist gap keys respec-
tively hold a list with the cumulative time and distance since the start of the
route. Every new value in these lists correspond to the entry of a new section.
The timeID key/value pair represents the start time of a trip in minutes from
12:00 PM and thus is a number between 0 and 1440 (1440/60 = 24 h). The
weekID is a number between 0 (Monday) and 6 (Sunday) that represents the
day in the week. The dateID is the day of the month and last of all the time
and dist keys hold the values for the total time and total distance traveled. Last
of all, the trainTypeID key holds the type of the train and the TrainID key
holds the unique identifier for that train.

In order to predict the arrival time for trains at level crossings, an additional
dataset is used that contains the coordinates of all the level crossings in the
Netherlands. The coordinates of a level crossings often interfere with the coordi-
nates of the end of a section. Thus, whenever the coordinates of a level crossing
are known the travel time prediction can simply be made up until that point.

3 Proposed Model

We propose a new model for predicting the arrival time of trains at level crossings
using a deep neural network architect. The model uses the spatial-temporal
features, external attributes, and a special CNN layer namely, the Geo-Conv
layer. These three main components are described in more detail in this section.
An overview of the model is shown in Fig. 1.
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The attribute component of the model processes the external factors and
includes the start time of the trip (TimeID), day of the week (DateID), the train
type (TrainTypeID), and a specific train identifier (TrainID). An embedding
method is used to transform the categorical attributes into a lower dimensional
vector. This means that each value of a categorical attribute υ ∈ [V ] is mapped
to an embedding vector R

Ex1. The influence of the above four attributes on the
arrival time have been investigated while training the model.

Besides, the travel distance (Dist) is also incorporated as an attribute. The
output of this component is a concatenation of all the attributes.

Fig. 1. The architecture of the proposed model

The spatio-temporal component in the model consists of two parts. The
first part consists of a so-called GEO-convolutional network (GEO-Conv) that
converts the coordinates of the sections into feature maps. The second part
consists of gated recurrent units (GRUs) that learn the temporal aspects from the
feature maps created by the GEO-convolutional neural network. GRUs use less
training parameters and therefore use less memory. Moreover, in comparison with
LSTMs they are executed faster and trained faster; so they are computationally
efficient [21].

The GEO-Conv is similar to a standard CNN. Since a CNN usually needs
a grid of equal partitioned cells in order to convolve over this grid, a modified
GEO-Conv is applied. For instance, a CNN is applied to an image of N × M
pixels. This is in contrast to GPS points that could take every position on a map
and thus are not structured at all. In order to grasp this fine granularity, the
GEO-Conv is introduced. This layer uses a convolutional filter with kernel size
k and a 1D-window that is applied over the sequence to generate a convoluted
location sequence. The kernel size is a hyperparameter that can be adjusted
by the user. A bigger kernel size means that more subsequent segments are
pooled together into a single embedding. For example in Fig. 1 the kernel size
is illustrated to be equal to three. This means three subsequent segments are
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pooled together. Because it is difficult for the 1D-window to extract the distance
directly from the raw coordinates, the final output of the GEO-convolution layer
is concatenated with the distance of each segment.

The multi-task learning component is the final part of the model. This
component combines all the previous output data and predicts a travel time for
both the entire route and every segment or section.

To estimate the travel time for the segments, the spatio-temporal features
of the i′th subsequence of the route are used. Then, two fully connected layers
are used to map every feature vector to a variable called ri which represents the
travel time for the i′th segment. Figure 1 shows this fact. The prediction of the
entire path is done based on the same feature sequence. For this, an attention
pooling method is used that combines the spatial information of a subsequence
with the external factors such as the start time of the route. Then, the attention
vector is fed to a fully connected layer connected to the residual connections that
enable the network to skip layers. This robust technique allows the training of
very deep neural networks with multiple layers [8]. Finally, the network outputs
predictions for the entire path as well as the segments. For the entire path, a
single neuron is used to output the final prediction denoted as rn.

4 Experiments

In this section, the performance of the proposed model is evaluated using the
datasets described in Sect. 2. The dataset used for training consists of approx-
imately 350.000 train routes that 70% is used as training data and 15% as
validation- and test data. Applying grid search, the combination of hyperpa-
rameters that achieves the best performance is gained. The setting of the model
hyperparameters used in the experiments is shown in Table 1. Cross-validation is
not used in this research as the data is collected over time and thus it contradicts
the fundamental assumptions of cross-validation that the data is independent
and identically distributed [4].

Table 1. The best model hyperparameters after grid search

Hyperparameter Description Value

Batch size The size of the batch to train 8

Epochs The amount of training iterations 10

Kernel size The kernel size of the Geo-Conv layer 2

Alpha The weight of combination in multi-task learning 0.8

Table 2 provides the results of the best performing model. Both the error for
the collective estimation (prediction for the entire routes) as well as the error for
the individual estimation (prediction per section) are reported in Table 2. The
individual estimations are used to provide the arrival time prediction for the
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various timesteps before the level crossing. Considering the fact that the average
trip time is approximately one hour, an MAE (Mean Absolute Error) of 281 s
for all the train trips in the test set reflects very accurate predictions.

Table 2. The results of the best model after grid search

Results best model after grid search

MAE (sec) RMSE (sec)

Collective estimation 281.67 583.88

Individual estimation 7.18 34.48

Figure 2 and Fig. 3 give a visual insight on how the model performs on the
test data. The MAE for the travel time estimation per sections is shown in Fig. 2.
The smaller the MAE is, the greener a section.

Figure 3 shows the number of times that a section appears in the test data.
The more a section appears in the dataset, the more its color turns to the blue
spectrum. The color turns grey if a section only appears a few times in the
dataset. Comparing Fig. 2 and Fig. 3, it can be concluded that fewer section
data is available in the parts where the model has a high MAE. Due to the
intrinsic of the model, this is expected. Therefore, the model most likely doesn’t
perform well for some parts in the Netherlands with less data available.

Fig. 2. The MAE per section (Color
figure online)

Fig. 3. Number of routes traversing a
section (Color figure online)

As an instance of how the model performs in the prediction of train arrival
times at level crossing, two sample level crossings are investigated.

The first sample belongs to a level crossing at the Jachtlaan in the city
of Apeldoorn of the Netherlands. Since it is situated close to the station of
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Apeldoorn, trains are approaching this level crossing at different speeds (e.g.,
freight trains do not stop at the Apeldoorn station and cross the level crossing
with a much higher speed than intercities and sprinters that stop at the station).

The second level crossing is a crossing at Jonkheer Ramweg near the Schalk-
wijk village. This level crossing is not positioned close to a station. However,
because it is positioned in a more rural area, fewer train routes in the dataset
crossed this level crossing. The arrival time prediction (Prediction Period) for
both level crossings is made up to 20 min before the trains arrive at the level
crossings. In this case, a farmer crossing with his herd or emergency services
looking for the fastest route will have enough time to make a plan.

Table 3. Accuracy of the predictions for a level crossing in Apeldoorn

Predictions for the LC at the Jachtlaan, Apeldoorn

Prediction Period Accuracy of the prediction (in seconds)

98% 90% Average

19–21min [−50 ∼ −20] [−45 ∼ −25] −35

9–11min [−7.6 ∼ 7.8] [−5.3 ∼ 5.6] 0.1

0–1min [−2.9 ∼ −1.9] [−2.8 ∼ −2.1] −2.4

Table 3 shows the arrival time predictions for the level crossing at Jachtlaan.
The table reports three prediction periods and the confidence intervals of 90%
and 98%. The average prediction per period is displayed in the last column of
the table. The results show that the prediction accuracy increases whenever the
train is closer to the level crossing. This is mainly because a shorter route consists
of less sections and therefore the accumulation of the error is less. Considering
the 19–21 min prediction period, it can be seen that the 98% prediction interval
is still only 50 s off. This means that even 20 min before the train arrives at the
level crossing, the model is able to make an accurate prediction which is at most
one minute off in 98% of the cases.

Table 4. Accuracy of the predictions for a LC in Schalkwijk

Predictions for the LC at the Jonkheer Ramweg, Schalkwijk

Prediction Period Accuracy of the prediction (in seconds)

98% 90% Average

19–21 min [−108 ∼ −91] [−106 ∼ −94] −100

9–11 min [−27 ∼ −20] [−27 ∼ −21] −24

0–1 min [0 ∼ 0.9] [0.2 ∼ 0.8] 0.5
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The predictions for the level crossing at the Jonkheer Ramweg in Schalkwijk
can be seen in Table 4. It can be noted that the predictions are less accurate
as compared to the predictions made for the level crossing at the Jachtlaan.
This can be explained due to the fact that less data is available for the railroad
traversing this level crossing. However, the error is still manageable.

5 Conclusion

The paper presents a deep learning-based architecture for predicting train arrival
times at level crossings that consists of three main components, namely Spatio-
Temporal, Multi-task learning, and Attribute. The Spatio-Temporal compo-
nent consists of a Geo-Conv layer which extracts the spatial information from a
train route and a GRU which extracts the temporal information. The Attribute
component extracts information from the external attributes. Several useful
attributes are embedded in the Attribute component, such as a unique train
identifier (trainID) and the type of the train (trainTyepID). Using a multi-task
learning component, prediction for the entire route and for the sections of that
route is possible. This enables us to provide the most actual arrival time pre-
dictions possible at various points in time. Finally, the Multi-task learning com-
ponent applies attention and predicts both the travel time per segment and the
travel time for the entire route. The results of the experiments show that the
model is capable of predicting the arrival time with great precision for various
timesteps. This model can function as a basis for other applications built upon
the predictions of this model in order to predict the arrival time for the trains
accurately.

For future work, it would be interesting to investigate if more attributes
could be included in the attribute component. Think for example of including
the weather as a categorical variable in the attribute component. Moreover, it
could be interesting to test whether using an LSTM instead of the GRU would
obtain better results. Besides, it is interesting to test the model performance for
different level crossings. Finally, the running time of a train arriving at a level
crossing and leaving it again is not considered in this research and thus could be
embedded into future work.
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